
Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 pp. 334-337 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/acsit.html 
 
 

Software Metrics estimation using  
Object Oriented Approach 

Deep Chandra Andola1 and Harendra Pratap Singh2 
1,2Amrapali Institute of Technology & Sciences, Haldwani  

E-mail: 1deep.andola@gmail.com, 2harendra.engineer@yahoo.co.in 
 
 

Abstract—Development of a software system using Object - oriented 
programming is widely used approach, there are several techniques 
specified by different researchers and analysts for estimating the size 
of object-oriented software system. Unified modeling language 
(UML) is also used to implement an object oriented software system, 
for mapping UML to function point analysis different types of 
approaches are proposed by software practitioners, here UML 
diagrams are used to map UML to function point analysis. Several 
rules were proposed in past, those rules can be applied on UML for 
estimating function points. Here UML class diagram are used for 
data function analysis and UML sequence diagram for transaction 
function analysis than applied transformation rules and guidelines to 
estimates function point is done. A tool based estimation technique 
for object oriented software metrics is developed which extricate the 
required information from UML diagrams and its logical view is 
reported to estimate the size of software, then using COCOMO II rest 
of the software metrics like effort, development time, productivity and 
cost will be calculated.  

1. INTRODUCTION 

As we all are well aware that in present time there is 
abundance of Object oriented software e.g. banking 
applications, military applications and in several other fields. 
Developing a quality, cost- effective software within the 
boundary of given time period is still a challenging task. In 
this sequence, it is required to manage the whole software 
development processes on the operative project plan. 
Therefore software development process must be incorporated 
with accurate estimation of varied software metrics like size, 
devoted effort, devoted time to complete, quality, risks factors 
and several resources of software. It is proved from research 
that size estimation should be done particularly in the early 
phase of the software development life cycle that is on the 
transformation model. There are several models for estimation 
efforts, cost and quality used by software practitioners and 
analysts. A varied variety of effort models are suggested and 
used and software size as a very important parameter in most 
of them.LOC (lines of codes) is often adopted in the above 
proposed effort models However, size estimation through 
LOC has difficulties one of them is that, the definition of LOC 
is imprecise and LOC is directly proportional to the 
programming language. Function point is a measure of 

software size that uses logical and functional terms, 
professionals and users more readily understand. The Unified 
Modeling Language (UML) was introduced to produce a 
simple language for object oriented modeling. Which was 
built to be extensible in a hierarchy to fulfill ample variation 
of needs and was also determined to be flexible of certain 
programming language and development techniques? In this 
research we have projected our efforts that is to automate this 
course of action is entirely in initial stages of development life 
cycles then COCOM II estimation techniques will be 
incorporated to calculates rest of the software metrics like 
effort, cost, development time etc. 

2. BASIC SOFTWARE METRICES 

Size or the bulkiness of a software system is considered as the 
basic metrics in software metrics model. Size can be estimated 
in Lines of code or function point. LOC cannot be measure 
properly in advance of completion of software because it 
varies due to programming language complexities of different 
programming language. In this span Function points are 
technologically individualistic, uniform, and repeatable, help 
normalize data, allow similarity and set project range and 
client presumption and expectation. So in such situation size is 
estimated regarding function point. 

2.1 FUNCTION POINT 

Function points measure the knowledge processing 
components of software systems. Function points measure the 
size of an application from the customer's perspective. The 
aspects of a software system that can be measured accurately 
are these: 

 Inputs to the application. 
 Outputs from the application. 
 Inspection by the end users. 
 Data files updated by the application. 
 The interface to other similar type of applications. 

2.2 FPA PROCESS ANALYSIS 

The FPA process involves: 



Software Metrics estimation using Object Oriented Approach 335 
 

 

Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 

1. Diagnosing the function point estimating boundary. A 
boundary specifies the limit into the interval in which the 
software system being measured and the external 
application or the user domain. A boundary adjudges 
which functions are involved in the function point count. 

2. Determining the unadjusted function point count (UFPC). 
The unadjusted function point count illustrates the exact 
measurable functionality produced to the user by the 
application. 

2.3 INTERNAL LOGICAL FILES 

An internal logical file (ILF) is a user recognizable cluster of 
associated data arranged within the limits of the application. 
An ILF is a cluster of data that is arranged within the 
application and meets the required user specification. Data 
stores that were developed for technical issues or for storage 
of transitional values are not counted or included. Additional 
ability automatically accommodated are not counted except 
the customer especially demands from the client. 

2.4 EXTERNAL INTERFACE FILES 

An External Interface File (EIF) is a user recognizable cluster 
of logically associated data arranged outside the limits of the 
application. An example of an EIF is a file or table consisting 
names of codes read by the system being counted but 
maintained by some other application. The cluster of data is 
logical and user recognizable and meets required user 
specification, laid by the application, not maintained by the 
application, is also an ILF in some other application. 

2.5 EXTERNAL INPUTS 

An external input (EI) computes the data that is extracted from 
outside the application limit. An external input is the ease 
given to the customer to insert, update, and delete records of 
an ILF. One or more ILFs can be maintained. For example, an 
external input may uphold department and employee data and 
facts. The data and facts inserted will be saved in some or 
more ILFs. Another example may be the maintenance of 
system parameters, which will be used by the processes of the 
software system which is being developed. Data and facts are 
received from outside the application boundary or limit, input 
is the basic business affair as seen by the user, elaborated and 
self contained. 

2.6 EXTERNAL OUTPUTS 

An external output (EO) is a phenomenon that produces data 
sent outside the application boundary or limit, for e.g., the 
external output the customer views in the form of reports, 
messages, etc. An external output also procures the files the 
application produced to be used as transaction by another 
application. One or more ILFs or EIFs can be treated as an 
external output. Data and facts are sent outside the application 
limits for another ILFs or EIFs. The output is consequential to 
the customer's business perspective, elaborated and self 

contained. Data in the ILF or EIF is not changed by the 
external output. Count only unique external output. 

3. GENERAL SOFTWARE METRICES 

Effort, Development time, cost and productivity are 
considered as a general software metrics. COCOMO II model 
is adopted for estimating these metrics. COCOMO II requires 
software size in terms of LOC. In first layer we estimate size 
in unadjusted function point. 

3.1 COCOMO II 

COCOMO II is tuned to modern software life cycles. The 
original COCOMO model has been very successful, but it 
doesn't apply to newer software development methodologies 
as well as it does to traditional methodologies. COCOMO II 
targets the software projects of the 1990s and 2000s, and will 
continue to evolve over the next few years.  
The primary objectives of the COCOMO II effort are: 
 To develop a software cost and schedule estimation model 

tuned to the life cycle practices of the 1990's and 2000's. 
 To develop software cost database and tool support 

capabilities for continuous model improvement. 
 To provide a quantitative analytic framework, and set of 

tools and techniques for evaluating the effects of software 
technology improvements on software life cycle costs and 
schedules. 

3.2 EFFORT ESTIMATION 

In COCOMO II effort is expressed as Person-Months (PM). A 
person month is the amount of time one person spends 
working on the software development project for one month. 
This number excludes time typically devoted to holidays, 
vacations, and weekend time off. The number of person-
months is different from the time it will take the project to 
complete; this is called the development schedule or Time to 
Develop, TDEV. For example, a project may be estimated to 
require 50 PM of effort but have a schedule of 11 months.  

 

Scale Factor 

The exponent E in equation is an aggregation of five scale 
drivers that account for the relative economies or 
diseconomies of scale encountered for software projects of 
different sizes. If E < 1.0 the project exhibits economies of 
scale. If the product's size is doubled, the project effort is less 
than doubled. For small projects, fixed start-up costs such as 
tool tailoring and setup of standards and administrative reports 
are often a source of economies of scale. If E = 1.0 the 
economies and diseconomies of scale are in balance. This 

     2.94 AWhere

EM (Size)APM
n 

1 i
i

E



 




Deep Chandra Andola and Harendra Pratap Singh 
 

 

Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 

336

linear model is often used for cost estimation of small projects. 
If E > 1. 0 the project exhibits diseconomies of scale.  

Table 1: Scale Factors (E) COCOMO II estimation model 

Scale 
drivers 

Very 
low 

Low Nominal High Very 
High 

Extra 
High 

 PREC 6.20 4.96 3.72 2.48 1.24 0.00 
FLEX 5.07 4.05 3.04 2.03 1.01 0.00 
RESL 7.07 5.65 4.24 2.83 1.41 0.00 
 TEAM 5.48 4.38 3.29 2.19 1.10 0.00 
 PMAT 7.80 6.24 4.68 3.12 1.56 0.00 
 or the estimated Process Maturity Level (EMPL) 

Early Design Model Cost Drivers 

COCOMO II uses a set of effort multipliers to adjust the 
nominal person-month estimate obtained from the project’s 
size and exponent drivers. This model is used in the early 
stages of a software project when very little may be known 
about the size of the product to be developed, the nature of the 
target platform, the nature of the personnel to be involved in 
the project, or the detailed specifics of the process to be used. 
This model could be employed in Application Generator, 
System Integration, or Infrastructure development sectors. The 
Early Design model uses KSLOC or unadjusted function 
points (UFP) for size. UFPs are converted to the equivalent 
SLOC and then to KSLOC. The application of project scale 
drivers is the same for Early Design and the Post-Architecture 
models. In the Early Design model a reduced set of cost 
drivers is used as shown in Table given below. The Early 
Design cost drivers are obtained by combining the Post-
Architecture model cost drivers.  

Table 2: Post-Architecture 

Early Design Post-Architecture Cost Drivers 
RCPX RELY, DATA, CPLX, DOCU 
RUSE RUSE 
PDIF TIME, STOR, PVOL 
PERS ACAP, PCAP, PCON 
PREX APEX, PLEX, LTEX 
FCIL TOOL, SITE 
SCED SCED 

3.2 SCHEDULE ESTIMATION 

Nominal-Schedule Estimation Equations 

Both the Post-Architecture and Early Design models use the 
same functional form to estimate the amount of effort and 
calendar time it will take to develop a software project. These 
nominal-schedule (NS) formulas exclude the cost driver for 
Required Development Schedule, SCED. The amount of effort 
in person-months, PMNS, is estimated by the formula: 

   

TDEVNS, it will take to develop the product is estimated by 
the formula: 

  
The value of n is 16 for the Post-Architecture model effort 
multipliers, EMi, and 6 for the Early Design model. The 
values of A, B, C, D, SF1… and SF5 for the Early Design 
model are the same as those for the Post-Architecture model. 
The values of EM1… and EM6 for the Early Design model are 
obtained by combining the values of their 16 Post-
Architecture counterparts. 

The subscript NS applied to PM and TDEV indicates that 
these are the nominal-schedule estimates of effort and 
calendar time. The effects of schedule compression or stretch-
out are covered by an additional cost driver, Required 
Development Schedule. Size is expressed as thousands of 
source lines of code (SLOC) or as unadjusted function points 
(UFP). Development labor cost is obtained by multiplying 
effort in PM by the average labor cost per PM. 

The values of A, B, C, and D are: 

A = 2.94 B = 0.91 
C = 3.67 D = 0.28 
 
The initial baseline schedule equation for the COCOMO II 
Early Design and Post-Architecture stages is: 

 

In Equation, C is a TDEV coefficient that can be calibrated, 
PMNS is the estimated PM excluding the SCED effort 
multiplier, D is a TDEV scaling base-exponent that can also 
be calibrated. E is the effort scaling exponent derived as the 
sum of project scale drivers and B as the calibrated scale 
driver base-exponent. SCED% is the compression / expansion 
percentage in the SCED effort multiplier rating scale. 

4. TOOL ARCHITECTURE 

In this section architecture of the instrument is assign which 
measures unarranged function point in early implementation 
of life cycle of object oriented software. Harput transformation 
rules are used to calculate function points. In this section 
architecture of tool is conferred which figure early design 
software metrics in layered way, in the first layer object 
oriented function points are computed based on UML design 
particularization on approaching Harput rules. These function 
points are changed into source line of codes (SLOC), primary 
input for COCOMO II to figure General Software Metrics, 













5

1j
j

n

1i
i

E
NS

SF0.01BE where

EMSizeAPM

0.91B 0.28,D 3.67,C where
100

SCED%
])(PM[CTDEV B))(E0.2(D

NS



 

 

    

SF01 .00.2DFWhere

PMCTDEV
5 

1 j
j 

F
NSNS

   










Software Metrics estimation using Object Oriented Approach 337 
 

 

Advances in Computer Science and Information Technology (ACSIT) 
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 4; April-June, 2015 

which is done in layer two of the tool. The most basic 
calculation in the COCOMO II model is the use of the Effort 
Equation to calculate the number of Person-Months required 
enroots a project. Most of the other COCOMO II results are 
imitative from this quantity. In this model, some of the most 
crucial points are contributing to a project's endurance and 
costs are the Scale Drivers. By using COCOMO II we can 
calculate effort in person month and development time. Now 
other metrics can be changes to by means of the following 
techniques. 

1. PM to Dollars – On the basis of hourly salary 
2. Productivity = FP/PM 
3. Productivity = KLOC/PM 
4. Development Cost = $/FP 
5. Development Cost = $/LOC 
6. Documentation= pages-of-documentation/FP 
7. Documentation = pages-of-documentation/KLOC 
Our main consideration is to figure software metrics in early 
design phase. 

DESIGN APPROACH 

UML design (Class diagram, Sequence diagram) designed in 
Rational Rose, as an input resource. We used Rational Rose 
Class diagram to calculate Data function types and order 
diagram for Transactional function type calculation. Class 
diagram and order diagram by rational rose develop design 
specification in UML syntax which is observed by analysis 
unit by applying Harput transformation rules. Both analysis 
unit and counting unit follow the rules to calculate unadjusted 
function points (UFP). 

5. CONCLUSION 

In this paper, function point analysis rules for design 
specification developed based on the UML is applied. Tool 
estimates object oriented software metrics in early life cycle 
phase, based on information of software in early design 
Harput rules and some guidelines to estimate size metrics and 
then COCOMO II techniques is applied to calculate rest of the 
software metrics. Tool architecture and design is only for 
object oriented software. Harput transformation rules and 
Uemura approach is used to automate function point 
estimation but still fully automatic model transformation still 
seems to be out of reach. Compared with FPA, the estimation 
error range will decreased as we are accounting for the 
complexities of generalization, aggregation and association 
which are not considered in traditional function point 
measurement techniques. This approach easily estimate the 
effort for a software development project based on its size 
using FPA. 

REFERENCES 

[1] A.J. Albrecht, “Measuring Application Development 
Productivity”, Proc. IBM Applications Development Symp., 
Monterey, Calif. ,Oct 14-17, 1979. 

[2] Harput V,Kaindl H,Kramer S.,”Extending Function Point 
Analysis to Object-Oriented Requirements Specifications 
“,procceding on 11th IEEE International Software Metrics 
Symposium (METRICS 2005). 

[3] D.J Ram, S.V.G.K Raju,” Object Oriented Design Function 
Points”, -7695-0825-1/00 2000 IEEE. 

[4] International Function Point User Group (IFPUG), Function 
Point Counting Practices Manual, Release 4.0, IFPUG, 
Westerville, Ohio, April 1990. 

[5] Symons,C.:“Function-Point Analysis: Difficulties and 
Improvements.” IEEE Transactions on Software Engineering, 
Vol. 14, Nr. 1, January 1988, pp. 2-11. 

[6] Poensgen, B. and Bock, B. Function-Point An]alyse, 
dpunkt.verlag, Heidelberg, 2005. 

[7] G. Caldiera, G. Antoniol, R. Fiutem, and C. Lokan. “Definition 
and experimental evaluation of function points for object-
oriented systems”In Proc. of the 5‘h International Symposium 
on Software Metrics, pages 167-178, November 1998. 

[8] Sneed, H.M.: “Estimating the Development Costs of Object-
Oriented Software.” Proceedings of 7th European Software 
Control and Metrics Conference, Wilmslow,UK,  

[9] Reifer, D.: “Web Development: Estimating Quick-to-Market 
Software.” IEEE Software, November/December 2000. 

[10] Gupta D.,Kaushal S.,Sadiq M.,”software Estimation tool based 
on three layer model for software engineering metrics” , ICMIT 
2008. 

[11] Prof. Ellis, COCOMO II.2000.0 Horowitz University of 
southern California, Center for software engineering, 1995 


